1. Variância explicada pelo efeito especial = somo dos quadrados das diferenças
2. Erro da variância = resíduo
3. Eta parcial ao quadrado = 1/2
Tamanho do efeito = calculado pelo G Power a partir do cálculo do (3)
IMPORTANTE: Numerador DF = graus de liberdade (2 grupos -1) x (2 momentos -1) = 1
Número de grupos: considerar 2 momentos e 2 grupos. Assim, são 4
Two Way Repeated Measures ANOVA (One Factor Repetition)
Data source: Data 1 in Jousi.SNB
Balanced Design
Dependent Variable: TBARS
Normality Test: Failed (P < 0,050)
Equal Variance Test: Failed (P < 0,050)
Source of Variation DF SS MS F P
Grupos 1 1,965 1,965 59,994 <0 nbsp="" span="">Group 0>
Sujeitos(Grupos) 40 1,310 0,0328
Tempos 1 1,763 1,763 64,978 <0 nbsp="" span="" style="color: red;">Treatment 0>
Grupos x Tempos 1 1,734 1,734 63,897 <0 nbsp="" span="" style="color: red;">Interaction0>
Residual 40 1,086 0,0271
Total 83 7,858 0,0947
The difference in the mean values among the different levels of Grupos is greater than would be expected by chance after allowing for effects of differences in Tempos. There is a statistically significant difference (P = <0 a="" comparison="" differ="" from="" group="" isolate="" multiple="" nbsp="" o:p="" others="" procedure.="" s="" the="" to="" use="" which="">0>
The difference in the mean values among the different levels of Tempos is greater than would be expected by chance after allowing for effects of differences in Grupos. There is a statistically significant difference (P = <0 a="" comparison="" differ="" from="" group="" isolate="" multiple="" nbsp="" o:p="" others="" procedure.="" s="" the="" to="" use="" which="">0>
The effect of different levels of Grupos depends on what level of Tempos is present. There is a statistically significant interaction between Grupos and Tempos. (P = <0 o:p="">0>
Power of performed test with alpha = 0,0500: for Grupos : 1,000
Power of performed test with alpha = 0,0500: for Tempos : 1,000
Power of performed test with alpha = 0,0500: for Grupos x Tempos : 1,000